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ABSTRACT
Land surface temperature (LST) plays a significant role in surface water
circulation and energy balance at both global and regional scales.
Thermal disaggregation technique, which relies on vegetation indices,
has beenwidely used due to its advantage in producing relatively high
resolution LST data. However, the spatial enhancement of satellite LST
using soil moisture delineated vegetation indices has not gained
enough attention. Here we compared the performances of tempera-
ture vegetation dryness index (TVDI), normalized difference vegetation
index (NDVI), and fractional vegetation coverage (FVC), in disaggregat-
ing LST over the humid agriculture region. The random forest (RF)
regression was used to depict the relationship between LST and vege-
tation indices in implementing thermal disaggregating. To improve the
model performance, we used the thin plate spline (TPS) approach to
calibrate the RF residual estimation. Results suggested that themodels
based on TVDI performed better than those based on NDVI and FVC,
with a reduced average root mean square error and mean absolute
error of 0.20 K and 0.16 K, respectively. Moreover, based on the surface
energy balance model, we found the surface evapotranspiration (ET)
derived with the TVDI disaggregated LST as inputs achieved higher
accuracy than those derivedwith NDVI and FVC disaggregated LST. It is
indicated that TVDI, a soil moisture delineated vegetation indices, can
improve the performance of LST enhancement and ET estimation over
the humid agriculture region, when combining random forest regres-
sion and TPS calibration. This work is valuable for terrestrial hydrology
related research.
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1. Introduction

Satellite observations using thermal frequency can provide available and reliable land
surface temperature (LST), which have been widely used in the fields of climate change
and surface hydrology (Li et al. 2013; Tran et al. 2006; Zhou et al. 2014). In recent years,
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several LST products have been released by different satellite missions, such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imager Radiometer
Suite (VIIRS). These datasets have proven to be substantially useful in a variety of
applications (Huang, Li, and Lu 2008; Gomis-Cebolla, Jimenez, and Sobrino 2018; Li
et al. 2019). Yet thermal observations are generally collected at a coarser pixel resolution,
partly due to the trade-off between spatial and temporal resolutions for the satellite
sensor. Another reason for this issue is that the energy of the thermal band collected is
mainly from the emitted energy from the earth other than the reflected energy from the
solar. The relatively low spatial resolution of current LST products makes them difficult to
capture detailed temporal and spatial variability of land surface. For example, for the
heterogeneous agricultural regions, remotely sensed thermal dataset is required at a finer
resolution (Wood et al. 2011; Wu et al. 2012; Semmens et al. 2016).

To date, various techniques based on statistical or physical mechanism have been
proposed to enhance the spatial resolution of thermal products. In general, these meth-
ods can be divided into two categories. The first one is the fusion-based method, which
combines information from different sensors to obtain the fine spatial resolution LST (Liu
et al. 2018; Weng, Fu, and Gao 2014; Wu et al. 2015). For instance, Moosavi et al. (2015) and
Shen et al. (2016) used the integration of multi-temporal information of MODIS and
LANDSAT to predict LST images with the high resolution the same as LANDSAT. The
other category is the statistical regression-based method, which disaggregates LST reso-
lution using a variety of auxiliary data. Statistical disaggregation methods are highly
recognized due to their simplicity and satisfactory accuracy (Zhan et al. 2013). This type
of methods generally depends on the regression correlations between LST and ancillary
datasets. To obtain fine-resolution LST, the relationship between LST and environment
factors was first established at coarse spatial scales. Then, this relationship was applied to
an auxiliary dataset with high spatial resolutions. Kustas et al. (2003) developed the
DisTrad using a quantitative function of Normalized difference vegetation index (NDVI)
and LST, which has been widely used in LST disaggregating. A number of models building
on DisTrad have been established to improve the LST disaggregating performance over
different regions (Dominguez et al. 2011; Gao, Kustas, and Anderson 2012; Bonafoni 2016).
In these models, various predicting variables such as digital elevation parameters, surface
albedo, and soil indices were used to enhance the resolution of LST products (Duan and Li
2016; Hutengs and Vohland 2016; Pan et al. 2018). It should be noted that among these
ancillary variables, vegetation indices (especially NDVI) have been generally adopted
because of their availability.

Although some methods have achieved satisfactory LST disaggregation accuracy over
some types of vegetation covers, the errors caused by the variabilities of soil moisture
were not well addressed for the relatively complex agricultural regions, especially those
sensitive to rainfall and irrigation (Gao, Kustas, and Anderson 2012; Liu et al. 2018b).
Accordingly, the models that are closely related to soil moisture have been developed to
provide an alternative to downscaling LST over wet regions (Yang et al. 2015; Zhang et al.
2015; Djamai et al. 2015). Additionally, Normalized difference water index (NDWI) and
Temperature vegetation dryness index (TVDI) have been used to disaggregate LST (Bayala
and Rivas 2014; Merlin et al. 2010; Zhang, Zhao, and Yang 2019). However, the comparison
between soil moisture delineated vegetation indices and NDVI (or other related para-
meters) over humid agriculture regions has not been thoroughly investigated. Moreover,
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the downscaling performance for satellite thermal product has been under debate. To the
best of our knowledge, at least two issues should be carefully studied. On one hand, some
detailed information still needs to be comprehensively considered especially regarding
the feasibility of applying the disaggregation model in complex agricultural regions, and
the selection of optimal ancillary variables (Merlin et al. 2012; Anderson et al. 2012;
Ebrahimy and Azadbakht 2019). On the other hand, residual calibration is important in
eliminating the uncertainty of model outputs. The reliable approach allowing for efficient
compensation model results is highly required, and this will make the nonlinear and
complex issues more tractable in the process of thermal disaggregation (Chen et al. 2014;
Xia et al. 2019).

The aim of this study is to comprehensively assess an LST disaggregation model
focusing on soil moisture condition based on TVDI. Other two conventional VIs, NDVI
and Fractional vegetation coverage (FVC), were used to provide a detailed comparative
analysis of the disaggregation methods. To improve the performance of disaggregated
models, an error calibration approach based on thin plate spline (TPS) interpolation
approach is applied. The models were evaluated on watershed landscapes in central
Iowa, USA, which is one rainy and humid agricultural region.

In addition, a couple of points deserve some elaboration in our work. On one hand,
linear disaggregation approaches are widely used because of its simplicity and feasibility.
Recently, several machine learning strategies have been developed in disaggregating
studies, and their performance can be better than linear models (Hutengs and Vohland
2016; Ebrahimy and Azadbakht 2019; Wu and Li 2019). To accurately depict the relation-
ship between LST and auxiliary variables in the process of thermal disaggregation, we
adopted the random forest (RF) algorithm that could be an effective solution for fitting
the non-linear relationship. On the other hand, LST images generated from thermal
disaggregation models can facilitate surface energy fluxes studies. Accordingly, on the
watershed scale, the performance of disaggregated LST models was further evaluated by
comparing the surface evapotranspiration (ET) estimated from different disaggregated
LST, referring to the work of Agam et al. (2008) and Bisquert et al. (2016).

The rest of this manuscript is organized as follows: Section 2 presents the methodology
of thermal disaggregation. Section 3 describes the study region, dataset and assessment
measures. Section 4 first gives a detailed analysis of the downscaling LST using the
simulated dataset, and the following three sub-sections in turns give the sensitive analysis
for TPS calibration, and the evaluation related to the simulated dataset and actual dataset
in terms of ET. Finally, we make a conclusion in section 5.

2. Methodology

2.1. LST disaggregation

Statistical-based thermal disaggregation method generally uses the relationship between
LST and the selected predictor (V). At a coarse scale, low resolution LST (LSTLow) can be
described with Equation (1).

LSTLow ¼ FðVLowÞ þ εLow (1)
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where F is the linear or non-linear regression. The predictive residual εLow at this scale can
be described as:

εLow ¼ LSTLow � FðVLowÞ (2)

When adding the residual produced at the coarse spatial resolution, high resolution LST
(LSTHigh) can be described with Equation (3):

LSTHigh ¼ FðVHighÞ þ εHigh (3)

If we assume the residual estimations are consistent at low resolution and high resolution
scales, Equation (3) can be deduced to Equation (4).

LSTHigh ¼ FðVHighÞ þ LSTLow � FðVLowÞ (4)

However, the uncertainties of the residuals are regionally sensitive. An effective error
interpolation method is required to calibrate these residuals via investigating their spatial
correlations. Detailed descriptions of the selection of interpolation techniques are shown
in section 2.3.

This study focused on one of the soil moisture delineated vegetation indices – TVDI. In
addition, NDVI and FVC were used to compare with TVDI in thermal disaggregation.

2.2. Introduction of the TVDI

The TVDI has been widely used in assessing and monitoring soil moisture conditions (Zhu,
Jia, and Lv 2017; Patel et al. 2009; Rahimzadeh-Bajgiran, Omasa, and Shimizu 2012). As
shown in Figure 1, for a given agricultural region, the combination of LST and NDVI could
constitute a trapezoid (or triangle) space, in which the LST variations mainly depend on
the surface water content. LST increases when the evaporative effects decrease in the
initial phase of water stress. In contrast, LST decreases as the vegetation covers the

Figure 1. Schematic of TVDI in the NDVI-LST space.
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increase in the later stage. As a result, variations of soil moisture and LST can be assessed
using TVDI under this frame. The TVDI of each pixel is derived using Equation (5):

TVDI � LST� LSTmin

LSTmax�LST

� �
NDVI

(5)

where LSTmin and LSTmax is the minimum and maximum surface temperature correspond-
ing to the NDVI at the condition of extreme wet and dry, respectively.

Several algorithms have been developed to determine the extreme edge (Zhu, Jia, and
Lv 2017; Long and Singh 2012). Yet no practical method is quite efficient due to the
complex hydrological environments caused by meteorological conditions and surface
covers. Considering the practicality and operability, this study used one space regression
method (Tang, Li, and Tang 2010; Su et al. 2011) to automatically determine the dry edge.
The wet edge was identified as the minimum LST corresponding to maximum NDVI. The
detailed description of this algorithm is provided in the supplementary materials.

2.3. Regression model selection and TSP calibration

In this study, random forest (RF) algorithmwas selected as the regressionmodel F. The RF is an
advanced machine learning strategy that has been successfully applied in various studies of
regression analysis or land-cover classification (Lopatin et al. 2016; Pal 2005). RF algorithm
generally uses a randomly training sample subset to product a tree, multiple of which can be
further aggregated tomake a final decision. In practice RF uses out-of-bag (OOB) samples, one-
third of samples that are excluded for fitting the regression, to calculate mean square error.
Through minimizing the error of OOB data, the number of available variables for each
regression tree can be optimized. In this study, RFmodelwas carried outwith python package.
Here, we also examined the performance of ordinary linear approaches and then compared it
with the RF approaches in order to comprehensively assess the LST downscaling models. The
models based on TVDI, NDVI, and FVC are hereafter referred to as TVDI_RF, NDVI_RF, and
FVC_RF, respectively, which are implemented on the RF frame.

The thin plate spline (TPS) (Wood 2003), a spatial interpolation technique, was used to
compensate for the model residual. Residuals produced by the RF disaggregation were
interpolated using the TPS approach which were then restored to the fine resolution
outputs. Generally, the low resolution image is the only available dataset used to dis-
tribute the residuals. First, a spatial dependent function was retrieved through interpolat-
ing the low resolution dataset. Then, this spatial dependent function was used to obtain
high resolution dataset. Considered its availability in interpolating geo-data, the TPS can
calibrate the RF outputs. For a given pixelðx; yÞ, it can be described as follows:

fTPSðx;yÞ ¼ a0 þ a0 � x þ a2 � y þ 1
2

Xn
i¼1

bi � r2i � log r2i (6)

with the following constraints:

Xn
i¼1

bi ¼
Xn
i¼1

bi � xi ¼
Xn
i¼1

bi � yi ¼ 0 (7)
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Where i is the index of pixels in each coarse pixel and n is the number pixels, and

r2i ¼ ðx � xiÞ2 þ ðy � yiÞ2. a and b are the regression coefficients.

3. Dataset and accuracy assessment

3.1. Dataset

The Walnut Creek (WC) watershed in the southern Ames, IA, USA, was selected as the
study area. The area of WC watershed (Figure 2) is approximately 100 km2 and the climate
is humid and rainy. The WC region was dominated by corn and soybean during the
growing season. In our previous work (Liu et al. 2018a, 2018), this region was successfully
used for testing LST disaggregation models.

The micrometeorological data and ET dataset were collected from the eddy covariance
towers that were equipped by the Soil Moisture Experiment (SMEX02). The SMEX02 project
was conducted over the WC region during May-September 2002 to assess the soil moisture
and water balance (Jacobs et al. 2004). In this study, five towers within theWCwatershed area
were used to assess the performance of the modelled ET.

The satellite imagery of Landsat ETM collected on 8 July 2002 was used to build the
model. There was a rainfall occurred around this period, resulting in a substantial alter-
nation for soil moisture condition. Another three scenes of Landsat TM/ETM images
collected on 16 July 2002, 17 July 2002 and 2 August 2002 were used to evaluate the
model performance. The surface conditions within these scenes were also affected by
obvious rainfalls which could have changed the water availability.

The Landsat-derived LST was obtained using the thermal channel, as described by Li et al.
(2004). To evaluate the performance of different models, Landsat image collected on
8 July 2002 were first resampled to 960 m, which were then upscaled to 240, 120 and 60 m,
respectively. These three scales were considered as the reference resolutions. The other three
Landsat imageries were first resampled to 960 m and then were disaggregated to the
resolution of 240 m, which was the commonly used scale in practical application considering
the data availability of current satellite observations. Despite several resampling approaches
were used in downscaling LST studies, one universal method was rarely found causing of the
complex cover condition and climatic background. However, as indicated by (Agam et al.
2007a, 2007b), different resampling algorithms could not significantly impact theperformance
of thermal downscaling model if appropriate dataset and model structure is available.

Figure 2. Location and classification image of the study area.
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Accordingly, a simple areal-average resampling approach was used here to upscale surface
temperature, following the study of Liu et al. (2018a) and Liu, Hongbo, and Xueke (2016).

In addition, a series of MODIS products were collected during the clear days between
1 July 2002 and 31 July 2002. The LST with the resolution of 1 km was from the daily
MODIS products (MOD11A1). The daily NDVI and FVC with the 250 m resolution were
estimated from the daily surface reflectance product (MOD09GQ). This dataset was used
to evaluate the spatial-temporal ET estimation performance of the downscaled inputs.

3.2. Accuracy assessment

The accuracy of LST disaggregation models was evaluated using the root mean square
error (RMSE) and the mean absolute error (MAE). Meanwhile, the Nash-Sutcliffe coefficient
(NSE) was adopted to assess the overall accuracy.

NSE ¼ 1:0�
Pn
i¼1

ðLSTri � LSTdi Þ
2

Pn
i¼1

LST�LST
r

� �2
(8)

where LSTrrepresents the reference surface temperatures, LSTd is the disaggregated

temperatures and LST
r
represents the mean value of the reference surface temperatures,

and i is the index of pixels in the image and n is the number of pixels. Here, a higher NSE
indicates a better disaggregation model performance.

The surface evapotranspiration is an effective measure for assessing thermal disaggre-
gating models at regional scales. The two-source energy balance (TSEB) model was used
to estimate ET in this study. The TSEB is a two-source energy balance model that can
estimate soil evaporation and canopy transpiration respectively, mainly using the remo-
tely sensed surface temperatures (Norman, Kustas, and Humes 1995; Kustas and Norman
2000). The advantage of TSEB is that it does not require prior knowledge. This model has
been proven to be robust for a large range of landscapes. The detailed descriptions of the
TSEB model can be found in the supplementary materials.

4. Results and analysis

4.1. Evaluation of the results

Figure 3(a–c) shows the statistical accuracy of different models using the RF algorithm. It is
clear that larger errors were found with finer resolutions. RMSE ranges from 1.92 K to
2.15 K and MAE ranges from 1.37 K to 1.67 K with the 60 m resolution. While for the 240 m
resolution, RMSE ranges from 1.25 K to 1.47 K and MAE ranges from 0.92 K to 1.08 K.

TVDI_RF performed better than NDVI_RF and FVC_RF in downscaling LST. TVDI_RF has
the smallest RMSE (1.92 K) and MAE (K). In particular, downscaled LST generated from
TVDI_RF has the smallest average RMSE and MAE compared with that from the NDVI_RF
(with an RMSE of 0.20 K and an MAE of 0.18 K) and FVC_RF (with an RMSE of 0.17 K and an
MAE of 0.12 K). The average NSE values of TVDI_ RF, NDVI_RF and FVC_RF are 0.71, 0.60,
and 0.61, respectively. It indicates that the disaggregated LST derived from TVDI_RF is
with higher consistency with the reference imagery in the overall structure.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7



The comparison between the RFmodels and the ordinary linear models was conducted
to further assess the three vegetation indices in disaggregating LST. Figure 3(d–f) shows
the error statistics of the models. Overall, the RF models outperformed the ordinary linear
models. What’s more, TVDI produced more accurate downscaling results compared with
the NDVI and FVC when using the ordinary linear model, reducing the average RMSE and
MAE to 0.14 K and 0.13 K, respectively.

Furthermore, we found a consistent pattern of the underestimation for all the three
models, primarily due to the contributions of soil moisture. Figures 4 and 5 shows the
input and output imagery results using RF and the ordinary linear model with different
indices. Through visual inspection, it can be observed that TVDI_RF provides better results
across the watershed area. This is attributed to the compensating effects of soil moisture.

For a detailed analysis of the thermal disaggregation models, we divided the absolute
errors into four ranges (0–0.5, 0.5–1, 1–2 and above 2 K). Figure 6 displayed the percen-
tage of pixels within each error range. The most of the errors from TVDI_RF model are
located in the 0–0.5 range, while for the other three ranges, there is a relatively smaller
portion of errors.

Disaggregated LST was also evaluated with three additional scenes – collected on
16 July 2002, 17 July 2002 and 2 August 2002 –with the most practical resolution (240 m).
Table 1 shows the statistical results using the TVDI_RF, NDVI_RF, and FVC_RF disaggregate
the LST from the resolution of 960 m to 240 m. TVDI_RF performed the best in

Figure 3. Performance assessment of disaggregated LST: (a)-(c) are the results using RF model with
the 240, 120 and 60 m resolution, respectively; and (d)-(f) are the results using an ordinary linear
model with the 240, 120 and 60 m resolution, respectively.
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downscaling LST. The highest accuracy of TVDI_RF compared with NDVI_RF and FVC_RF
were observed across all the imageries. A similar trend was also found for NSE, which can
further demonstrate the superiority of TVDI in downscaling LST when combined with the
RF regression.

4.2. Sensitive analysis of the TSP calibration

The residual calibration has a significant influence on the performance of thermal disag-
gregating. Therefore, the sensitivity analysis was also carried out using residual calibration
methods. The performance of TPS was compared with two commonly used methods, IDW
(Inverse Distance Weighting) and Kriging.

Figure 7 shows the residual distribution using different calibration methods and the
corresponding images at the 240 m scale. By visual inspection, TPS kept more spatial
details than the other three methods did, demonstrating its advantage of mitigating the
model uncertainties. The accuracies for disaggregated LST with different residual

(a) (b)

(c) (d) (e)

Figure 4. LST (in K) maps of (a) 960 m MODIS inputs, (b) 240 m reference image and the disaggregated
results produced by the random forest models based on (c) TVDI, (d) NDVI, and (e) FVC.

(a) (b)

(c) (d) (e)

Figure 5. LST (in K) maps of (a) 960 m MODIS inputs, (b) 240 m reference image and the disaggregated
results produced by the ordinary linear models based on (c) TVDI, (d) NDVI, and (e) FVC.
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calibration methods are shown in Figure 8. TPS achieved better results comparing to IDW
and Kriging. TPS calibration reduced errors of downscaled LST datasets by considering
spatial autocorrelation of the LST residuals, the results presented in this study are con-
sistent with the previous studies (Immerzeel, Rutten, and Droogers 2009; Chen et al. 2014).

4.3. Assess the disaggregated LST using ET estimation

To further assess the accuracy of disaggregated LST, we compared its performance in
improving ET estimation. Specifically, the ETs estimated using the disaggregated LSTs (at
240 m, 120 m and 60 m scale, respectively) as driving parameters were compared with
those using the reference LSTs as driving parameters. Figure 9 shows the statistical
accuracy of the estimated ET. The ET estimates coincided with the results of disaggregated
LST. It’s observed the ET estimated using the TVDI_RF downscaled LST produced lower
RMSE and MAE. On average, RMSE and MAE of the TVDI_RF derived ET are approximately
5.3 Wm−2 and 4.6 Wm−2 lower than those of NDVI_RF and FVC_RF derived ET, respectively.

ET results were also reflected by NSE values. TVDI_RF achieved an additional average
improvement in model ET accuracy of 5.1% and 7.8% compared to NDVI_RF and FVC_RF

Figure 6. Percentage of pixels falling on four absolute error ranges with the resolution of (a) 240 m, (b)
120 m and (c) 60 m.

Table 1. Statistics of the 240 m LST disaggregated from 960 m.
Date Index TVDI_ RF NDVI_RF FVC_RF

16 July 2002 RMSE (K) 1.23 1.36 1.34
MAE (K) 0.87 1.03 1.01
NSE 0.78 0.66 0.68

17 July 2002 RMSE (K) 1.27 1.41 1.36
MAE (K) 0.88 1.05 1.03
NSE 0.71 0.63 0.64

2 August 2002 RMSE (K) 1.35 1.48 1.46
MAE (K) 0.94 1.13 1.11
NSE 0.72 0.59 0.62
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did, respectively. This demonstrated the better performance of TVDI_RF in LST enhance-
ment, consequently facilitating the estimation of ET.

Figure 10 shows the visual images of TSEB modelled ET using the 240 m LST maps as
inputs. In addition, it should be noted that while the soil moisture obviously affects the
LST downscaling, its effects on the ET estimation is relatively small. This decrease is caused
by the neutralization of surface ET estimation model.

Figure 7. Residual maps with calibration methods of (a) no calibration, (b) TPS, (c) IDW, and (d)
Kriging, and the corresponding 240 m resolution disaggregated LST that is calibrated with methods of
(a) no calibration, (b) TPS, (c) IDW, and (d) Kriging.

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



4.4. ET estimation over watershed

For practical purposes, 1 km MODIS LST and high resolution LST was respectively used to
estimate the daily ET over the watershed area. High resolution LST with a resolution of
250 m was retrieved with the TVDI-RF model during the clear days between 1 July 2002

Figure 8. Comparison of the accuracy for disaggregated LST with residual calibration methods of (a)
no calibration, (b) TPS, (c) IDW, and (d) Kriging.

Figure 9. Statistics of the ET estimation using the disaggregated LST in comparison with the reference
LST with the resolution of (a) 240 m, (b) 120 m and (c) 60 m.
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(DOY182) and 31 July 2002 (DOY212). Two sets of LST dataset were used to drive the TSEB
model. The daily ET was evaluated with the EC tower values. Both of the modelled daily
ETs agreed well with the field measurements, as shown in Figure 11. The estimated ET
using high resolution disaggregated LST were more accurate compared with that using
the original MODIS.

Furthermore, we examined the spatial distributions of TSEB-produced ET. As shown in
Figures 12 and 13, the daily ET of vegetation is higher than those of non-vegetation covers,
indicating the spatial and temporal variations of ET were reasonable. Moreover, the spatial-
temporal distributions of ET can be better identified using the high resolution disaggre-
gated ET images. The magnitudes and distributions of ET are easier to be distinguished
using the downscaled images. This study is consistent with the studies which suggested
that the higher resolution of MODIS was much better in describing spatial patterns of ET,
partly because the moisture condition and land-cover types at humid areas are more likely
to be discriminated with high resolutions (Agam et al. 2007a; Liu et al. 2018).

Figure 10. ET estimates from TSEB model using inputs of (a) the 960 m LST image, (b) the 240 m
reference image, and (c–e) is the thermal disaggregated LST produced by the random forest model
using the indices of TVDI, NDVI and FVC, respectively.

(a) (b)

Figure 11. Comparison of the TSEB modelled daily ET accuracy for: (a) 1 km MDOSI LST and (b) 250 m
disaggregation LST.
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5. Summary and conclusion

Current studies have indicated that the accuracy of thermal disaggregation models is
susceptible to soil moisture conditions, but quantitative investigation for these effects
regarding its magnitude and availability for surface ET estimation is still lacking. To
investigate satellite LST disaggregation methods considering the influences of soil moist-
ure, we assessed the TVDI thermal disaggregation models. The TVDI-based models were
compared with two commonly used VI-based models across the watershed landscapes in
central Iowa, USA. The evaluation was conducted with both the simulated and observa-
tional data at different scales.

For the downscaling performance with the simulated dataset, the average RMSE and
MAE was decreased from 1.81 K (NDVI_RF and FVC_RF) to 1.61 K (TVDI-RF) and from 1.29 K
(NDVI_RF and FVC_RF) to 1.13 K (TVDI-RF), respectively. Compared with NDVI and FVC,

Figure 12. TSEB modelled daily ET using the 1 km MODIS LST over the WC area.

Figure 13. TSEB modelled daily ET using the 250 m downscaled LST over the WC area.
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TVDI can delineate soil moisture, which makes it capable to enhance LST retrieval over the
wet agriculture regions. This is primarily due to the fact that the variations in water
availability and soil moisture condition could be better captured by TVDI, especially
over the humid and rainy agricultural regions (Eswar, Sekhar, and Bhattacharya 2016;
Gao, Kustas, and Anderson 2012).

Random forest, a non-linear machine learning algorithm, was adopted to establish the
relationship between LST and three vegetation indices. RF regression was found compe-
tent in downscaling LST especially integrating with TVDI. Compared with ordinary linear
regression, RF model has been proved of robust in coping with non-linear problems
(Reichstein et al. 2019). Being insensitive to the multicollinearity among explanatory
variables makes RF easily address high-dimension parameterization while not considering
the overfitting issue, and this facilitates the regression model in training variables and
achieving desirable outcome. Moreover, RF is relatively readily implemented due to the
combined merits of automatic model fitting and small tuning parameters, and therefore
could provide an accessible framework for complex landscapes at different scales.
However, it should be noted that RF-based model may be susceptible to training data.
For this study over wet agricultural area, enough pixels must be included to ensure the
representation of different surface properties. Therefore, properly selecting training pixels
should be carefully studied in order to achieve reasonable rules for learning to describe
LST changes and the connections with explanatory variables.

On the other hand, a calibration approach based on residual interpolation model is
proved to be an essential step for downscaling LST product. Considering the spatial
variability caused by the change of land cover types, residuals were interpolated to fine
resolutions which were then restored to the RF model outputs. The downscaled LST using
TPS calibration can further improve the model accuracy compared with the IDW and
Kriging. The integration of TPS calibration into the framework of random forests shows
a promising potential to improve LST downscaling because of the decrease in error
propagation (Quan et al. 2018).

Accurate ET product is crucial in agriculture monitoring and hydrology studies. This
study demonstrated the feasibility of the available downscaled LST in promoting ET
estimation over a wet agricultural land, which was supported by recent studies (Bisquert
et al. 2016; Semmens et al. 2016). It was noted that the TSEB estimated ET using TVDI
disaggregated LST were more accurate than those using NDVI and FVC-derived LST. For the
simulated dataset, the TVDI-RF downscaled LST achieved an average 5.1–7.8% higher
accuracy in estimating ET compared to NDVI-RF and FVC-RF models. Meanwhile, using
the MODIS product, TVDI-RF could improve the estimation of daily ET across the watershed
region by enhancing the disaggregation of available LST. It should be noted that even
though the effects of soil moisture condition on surface ET estimation is relatively small
compared to LST downscaling due to the neutralization of ET estimation model,
a compensatory role of TVDI in reducing soil moisture effects on ET estimation cannot be
ignored.

The findings presented here would be useful for regions where soil moisture is vital for
agriculture management. The better performance of TVDI for the agriculture region
indicates that soil moisture plays a possible role in controlling the thermal variations and
consequently affects LST. Our study was consistent with and further demonstrated pre-
vious work, which reported that LST relies heavily on soil moisture (Sandholt, Rasmussen,
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and Andersen 2002; Amazirh, Merlin, and Er-Raki 2019). On the other hand, to eliminate the
soil moisture-related bias in LST disaggregation, an attempt was made to delineate these
effects using multiple remote sensing data. Yet directly using soil moisture for thermal
disaggregation models has been constrained by data availability within the large scale.
Alternative indices accounting for soil moisture effects may provide a reference for solving
this issue. In future research, developing models that are more applicable to complex
surface hydrology environments should be given enough attention.
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