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ABSTRACT 

 

This study introduced the vegetation index based on the 

universal pattern decomposition method (VIUPD) and then 

applied on a new sensor—Landsat 8 Operational Land 

Imager (OLI). VIUPD is a valuable sensor-independent 

spectral analysis method. Each pixel is described as the 

linear mixture of standard spectral patterns for water, 

vegetation, soil and supplementary patterns included when 

necessary. In the present paper, processing procedure about 

the data acquisition, radiometric calibration and atmospheric 

correction have been elaborated. The normalized reflectance 

(P) of four standard samples resampled to OLI has been 

listed. For validation of the results, Normalized Difference 

Vegetation Index (NDVI) and VIUPD have been calculated 

for comparison. The results showed that VIUPD is more 

sensitive to the vegetation amount change even in the high 

vegetation coverage, while the NDVI is more rapidly 

saturated in high vegetation cover area. In addition, VIUPD 

is more sensitive to the soil background than NDVI.  

 

Index Terms— VIUPD, UPDM, Landsat, Operational 

Land Imager, sensor independent. 

 

1. INTRODUCTION 

 

Identifying the state of vegetation over a wild range and 

long-term is important in regional and global modeling, 

ecological monitoring and climate change detection[1]. 

Remote sensing data obtained using satellite instruments, 

offer the potential of measuring vegetation status across a 

wide area of spatial and temporal scales. Vegetation indices 

are the simplest and most efficiently way to evaluate the 

information of vegetation from remote sensing data. The 

traditional vegetation index such as Normalized Difference 

Vegetation Index (NDVI) was put forward to use the usual 

satellite red and near-infrared bands. In another word, they 

relies on the sensors so it will has limits when two or more 

sensors fusion or compared. VIUPD is a sensor independent 

vegetation index based on the Universal Pattern 

Decomposition Method (UPDM) which can be applied on 

both multispectral data and hyperspectral data. Pattern 

decomposition coefficients for each pixel contain almost all 

the sensor-derived information. More importantly, the 

VIUPD is independent of sensors[2]. Many researchers 

demonstrated the applications of VIUPD by using different 

sensors, such as TM, ETM+, MODIS and hyperspectral 

sensors like Hyperion and CHRIS[2, 3]. 

Landsat program has been dedicated to sustaining data 

continuity for nearly four decades[4, 5] and accumulate rich 

high spatial resolution and multi-spectrum remote sensing 

images[6]. The continuous Landsat data source provides 

long-term observation for global change, especially on land 

cover change detection and vegetation phenology [6-9]. 

Lately the launching of Landsat 8 injected new blood into 

this big and ancient family to make it continually serve for 

researchers to earth observation. Since the Landsat 8 is a 

new sensor, the independent vegetation index—VIUPD   has 

not been used on the OLI onboard the Landsat 8. The 

objective of this paper is to demonstrate how to get the 

VIUPD parameters for Landsat 8 data.  

 

2. METHOD 

 

VIUPD is based on the universal pattern decomposition 

method (UPDM)[10]. UPDM has improved the pattern 

decomposition method (PDM) to make the parameters 

independent on sensors. The principle of UPDM is based on 

that each pixel measured by the sensor can be decomposed 

into three standard spectral elements which are the water, 

vegetation and soil as the following equation (1) described. 

4 4( ) ( ) ( ) ( ) ( )w w v v s sR i C P i C P i C P i C P i              (1) 

Where R(i) is the reflectance of band i for each pixel. Cw, Cv, 

Cs are the decomposition coefficients, in other words, they 

stand for the abundance for each element. Pw, Pv, Ps are the 

normalized reflectance of standard samples which are the 

water, vegetation, soil and supplementary yellow leaf. Three 

components can cover about 95.5% information of spectral 

reflectance. Adding on the fourth supplement component 

will reduce the error. 

     Each P can be got as follows: 
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Where, λ is the wavelength, k contains the four standard 

samples which are the water, vegetation, soil and 

supplementary yellow leaf. If we integral for P in the full-

range wavelength, no matter for which sample we can get:  

( )kP d                                (3) 

That is to say, P has normalized on the wavelength. 

Because of the equation (3), the integral for equation (1) can 

be shown as:  
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The equation (5) represents the sum of total reflectance; 

even a supplementary pattern is included. When the satellite 

bands are more than standard samples, we’d better use the 

least square method to get C to obtain the least error:  
1( )T TC P P P R                           (6) 

Since decomposition coefficients (Cw, Cv, Cs, C4) are 

independent of sensors, we utilized a vegetation index based 

on the universal pattern decomposition method. 
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The soil pattern factor a is recommended as 0.1 by 

Zhang[10]. 

 

3. DATA 

 

Landsat 8 took Landsat 5’s orbit after launching on February 

11, 2013, continuing the Landsat program’s long legacy. 

After the fast development of satellite observation during the 

past decades, Landsat 8 made a great change in the spectral 

bands (see in table 1) and made a better balance of signal 

and noise (http://landsat.usgs.gov/landsat8.php). The biggest 

change occurs in OLI band 5 (0.845–0.885μm) to exclude a 

water vapor absorption feature at 0.825μm obtained in 

ETM+ near infrared band (0.775–0.900μm). Besides, two 

new bands are added in the OLI: deep blue band (band 1: 

0.433 - 0.453) which provides the ocean color observations 

in coastal zones and a shortwave infrared band (band 9: 

1.360 - 1.390) to detect the cirrus. 

The Landsat 8 products can be obtained from the USGS 

website (http://earthexplorer.usgs.gov/). One Landsat 8 

image (LC81230322013132LGN02) contained Beijing, 

China was been downloaded in this paper. From its name, 

we can easily read its Path/Row and acquisition data. The 

downloaded data is level 1T data which have only been 

geometrically corrected. The remaining process contains 

radiometric calibration to the radiance and atmospheric 

correction to the surface reflectance and to calculate the 

vegetation indices based on the Landsat scene. 
Table 1. Bands and wavelength of Landsat 8 Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS) 

Bands  λ(µm) 

Band 1- Coastal aerosol  0.433 - 0.453  

Band 2- Blue  0.450 - 0.515  

Band 3- Green 0.525 - 0.600  

Band 4- Red 0.630 - 0.680  

Band 5- Near Infrared 0.845 - 0.885  

Band 6- SWIR 1 1.560 - 1.660  

Band 7- SWIR 2 2.100 - 2.300  

Band 8- Pan 0.500 - 0.680  

Band 9- Cirrus 1.360 - 1.390  

Band 10- TIRS 1 10.60 - 11.19 

Band 11-TIRS 2 11.50 - 12.51  

 

3.1 Radiometric Calibration 

 

First of all, radiometric calibration is needed to rescale the 

unsigned integer format to radiance using radiometric 

rescaling coefficients provided in the product metadata file 

(.MTL file). 

L=M cal LL Q A                     (8) 

where: 

Lλ is TOA spectral radiance (Watts/( m2 * srad * μm)); ML is 

Band-specific multiplicative rescaling factor from the 

metadata (RADIANCE_MULT_BAND_x, where x is the 

band number); AL is Band-specific additive rescaling factor 

from the metadata (RADIANCE_ADD_BAND_x, where x 

is the band number); Qcal is Quantized and calibrated 

standard product pixel values (DN). 

 

3.2 Atmospheric correction 

 

To extract quantitative information from the Landsat OLI 

imagery accurately, atmospheric correction is a necessary 

step. 6S (Second Simulation of the Satellite Signal in the 

Solar Spectrum) approach is been used for this purpose. The 

6S is a basic radiative transfer code used for calculation of 

lookup tables in the MODIS atmospheric correction 

algorithm[11]. It enables accurate simulations of satellite or 

plane observation, accounting for elevated targets, use of 

anisotropic and lambertian surfaces and calculation of 

gaseous absorption. Since the previous TM on board 

Landsat 5 and ETM+ on board Landsat 7 which have been 

released the surface reflectance products used the 

MODIS/6S methodology[12], it will helpful to maintain the 

data continuity of Landsat series data.  

 

3.3 Calculate the VIUPD 

 

Since we want to apply the VIUPD to Landsat 8 data, firstly 

we should measure the standard samples including 
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vegetation, water, soil and yellow leaf as the standard 

spectral patterns. Then normalize the standard spectrum 

according to equation 2. Thirdly, resample these continuous 

spectral to the Landsat 8\OLI sensor. The other sensor TIRS 

onboard the Landsat 8 is not used for our resample because 

the wavelengths of TIRS are not the response range of 

vegetation. What’s more, the first band which has been 

designed to study the coastal aerosol and the band 9 which 

has been used for the cirrus research and the panchromatic 

band are not involved in the resample process.  

The result of P is as follows: 

4
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    As soon as we get the coefficients P for Landsat 8 OLI, 

we can calculate the pattern decomposition coefficients (Cw, 

Cv, Cs, C4) by using the least square method principle. Lastly, 

we obtained single Landsat 8 image was used to calculate 

VIUPD and NDVI respectively. 

 

4. RESULTS AND DISCUSSION 

 

Figure 1 describes a standard vegetation pixel in the Landsat 

image value change during the atmospheric correction. It is 

proved that 6S methodology can reduce the atmosphere 

effect on the satellite data. For example, the Rayleigh 

scattering in the blue band has been greatly modified. 

 
Figure 1. Value before and after atmospheric correction. Three 

lines stands for the false color display of the image. The upper 

figure is DN value, while the below figure is reflectance value. 

  
(a)        

  
(b)   

 
                                   (c) 

Figure 2. Subfigure (a) stands for the false color representation of 

the original Landsat 8 data; (b) stands for the result of VIUPD by 

standard rainbow color mapping; (c) stands for the result of NDVI 

by standard rainbow color mapping. 

Once we get the reflectance data through radiometric 

calibration and atmospheric correction, we can easily 

calculate the NDVI using the band math. VIUPD can be got 

by firstly input the normalized reflectance (P) of standard 

samples which are the water, vegetation, soil and 

supplementary yellow leaf. Then calculate the pattern 

decomposition coefficients (C). In the end, get VIUPD 

according to equation 7. Figure 2 is the display of vegetation 

indices calculate from the processed Landsat data. From the 

images, we can tell that it is earlier for NDVI to reach 

saturation than VIUPD especially on the high vegetation 

coverage area. Although the ratio concept of NDVI will 

reduce many forms of multiplicative noise such as 

illumination differences, cloud shadows, atmospheric 

attenuation and certain topographic variations [13-15], the 

linear stretch will make the NDVI easily saturation in high 

vegetation coverage. On the other hand, VIUPD 
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distinguishes the urban and vegetation area better than 

NDVI which presents VIUPD more sensitive to the land 

cover change. 

 
Figure 3. The correlation relationship between VIUPD and NDVI. 

In order to quantitative analysis, we generate 100 random 

pixels from the region of interest of displayed figure 2. The 

correlation relationship between VIUPD and NDVI is 

expressed in figure 3. The X axis stands for the VIUPD 

value, while the Y axis stands for the NDVI value of the 

same 100 pixels. Generally, NDVI values are greater than 

VIUPD since the slope is 1.2393 which is greater than 1. 

Relevance represented by R
2 

=0.873 show the high 

correlation between VIUPD and NDVI.  

 

5. CONCLUSIONS 

Landsat series historical sensors (TM, ETM+) have been 

used to construct vegetation index based on the universal 

pattern decomposition method (VIUPD) and achieved good 

application effect. This is the first time that the VIUPD been 

applied on the Landsat new sensor—Operational Land 

Imager (OLI) on board Landsat 8.  

VIUPD can provide sensor-independent values and 

enables direct comparisons using remote sensing data from 

various sources. This advantageous will be really helpful for 

the long-term observation data comparison. 
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